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Abstract
Informally, a proper forcing P is strategically bounding if there is a strategy to prove
that P is ωω-bounding. We prove that certain MAD families are indestructible by
strategically bounding forcings. Our motivation for studying this topic is the problem
of Roitman: Does d = ω1 imply a = ω1? From this work, it follows that a model of
ω1 = d < a cannot be obtained by forcing with a strategically bounding forcing over
a model of CH. We prove an iteration theorem for strategically bounding forcings.

Keywords MAD families · Bounding forcings · Strategically bounding · Forcing ·
Cardinal invariants
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1 Introduction

One of the most intriguing open problems regarding cardinal invariants of the contin-
uum is the following:
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310 O. Guzmán , M. Hrušák

Problem 1.1 (Roitman) Does d = ω1 imply a = ω1?1

A (probably equivalent) version of Roitman’s problem is the following:

Problem 1.2 Assume the Continuum Hypothesis (CH) holds in V . Let A be an MAD
family. Is there a proper ωω-bounding forcing that destroys A?

Using well-known iteration theorems, it is easy to see that a positive answer to
the problem would yield a negative answer to the problem of Roitman. In order to
solve it, we must understand which MAD families survive certain forcing extensions.
Indestructibility of MAD families and ideals has been thoroughly studied recently. The
interested reader may consult [9,12,20–23,29,30] or [7] among many others.

In order to provide a partial answer to Problem1.2 (and hopefully, to shed some light
on Roitman’s problem) we restrict our attention to a particular class of ωω-bounding
forcings—the class of stratigically bounding forcings (defined below). One of the
main results in this note is that Problem 1.2 has a negative answer for forcings in this
class.

Let P be a partial order and p ∈ P. The bounding game BG(P, p) is an infinite
two-player game defined as follows:

I D0 D1 . . .
II B0 B1 . . .

Two players I and II take turns playing subsets of P, player I sets Dn ⊆ P open dense
below p, and player II finite sets Bn ⊆ Dn . Player II wins the game if there is q � p
such that Bn is predense below q for every n ∈ ω (i.e. if every r � q is compatible
with an element of Bn), otherwise player I wins.

Recall that a forcing P is ωω-bounding if it does not add unbounded reals. In other
words, if ωω ∩ V is still a dominating family after forcing with P. The following is a
result of Jech and Zapletal (see [27] and [44, Theorem 3.10.7]):

Proposition 1.3 (Jech, Zapletal) Let P be a proper forcing. The following are equiva-
lent:

(1) P is ωω-bounding.
(2) For every p ∈ P, the player I does not have a winning strategy on BG(P, p).

The main definition of the paper is then natural:

Definition 1.4 Let P be a partial order. P is strategically bounding if for every p ∈ P,
the player II has a winning strategy on BG(P, p).

Examples of strategically bounding forcings are the Sacks, Silver and random forc-
ings. In fact, the usual proofs that these forcings are ωω-bounding actually show that
they are strategically bounding. Strategically bounding forcings have been studied in
the past. In particular, the ccc case has received a lot of attention because of its relation
to Maharam’s and von Neumann’s problems. Let us mention a fundamental result of
Fremlin:

1 The undefined notions will be reviewed in the next section.
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Theorem 1.5 (Fremlin, see [1]) Let B be a ccc complete Boolean algebra. The follow-
ing are equivalent:

(1) B is strategically bounding.
(2) There is a continuous submeasure on B.

For more on strategically bounding forcings, the reader may consult [44].
In relation to the problem of Roitman, it is worth pointing out that Shelah proved

that the inequality d < a is consistent ([40], see also [4]). This is achieved by the
technique of “iterating along a template”. The reader may consult [4–6,14,15,32,33]
and [13] to learn more about this topic.

The following problem of Brendle and Raghavan is a weaker version of Roitman’s
problem:

Problem 1.6 (Brendle, Raghavan [8]) Does b = s = ω1 imply a = ω1?

The paper is organized as follows: In Sect. 3 we present the basic theory of strategi-
cally bounding forcings and the bounding game. In Sect. 4 we prove that Problem 1.2
has a negative answer when restricted to strategicly bounding forcings. In Sect. 5 we
obtain similar results to partitions of compact subsets of ωω. In Sect. 6 we prove the
preservation of the property of being strategically bounding under countable support
iteration. In the last section we present some open questions.

2 Preliminaries

Our notation and definitions are mostly standard, but we will review the main notions
used in the paper for the convenience of the reader.

A family A ⊆ [ω]ω is almost disjoint (AD) if the intersection of any two distinct
elements ofA is finite, aMAD family is an almost disjoint familymaximal with respect
to inclusion. The almost disjointness number a is the smallest size of a MAD family.

Given f , g ∈ ωω, we write f � g if and only if f (n) � g(n) for every n ∈ ω and
f �∗g if and only if f (n) � g(n) for all but finitely many n ∈ ω. A familyB ⊆ ωω is
unbounded if B is unbounded with respect to �∗. A family D ⊆ ωω is a dominating
family if for every f ∈ ωω, there is g ∈ D such that f �∗g. The bounding number
b is the size of the smallest unbounded family and the dominating number d is the
smallest size of a dominating family.

We say that S splits X if S ∩ X and X \ S are both infinite. A family S ⊆[ω]ω is a
splitting family if for every X ∈ [ω]ω there is S ∈ S such that S splits X . The splitting
number s is the smallest size of a splitting family. The reader may consult [3] in order
to learn more about the cardinal invariants used in this paper.

Let I be an ideal on ω, F a filter on ω andA aMAD family. Define2 I+ = ℘(ω)\I,
i.e. the subsets of ω that are not in I. We say that a forcing notion P destroys I if P

adds an infinite subset of ω that is almost disjoint from every element of I. We say that
P diagonalizes F if P adds an infinite set almost contained in every element of F. It is
easy to see thatP destroys I if and only ifP diagonalizes the filter I∗ = {ω\ A | A ∈ I}.
2 By ℘(a) we denote the powerset of a.
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By I(A)we denote the ideal generated byA (and the finite sets).We say thatP destroys
a MAD family A if A is no longer maximal after forcing with P, i.e. if and only if P

destroys the ideal I(A).
Let T ⊆ ω<ω be a tree. If s ∈ T we define sucT (s) = {α | s�α ∈ T } (where s�α

is the sequence that has s as an initial segment and α in the last entry). We say that
f ∈ ωω is a branch of T if f � n ∈ T for every n ∈ ω. The set of all branches of T is
denoted by [T ]. For every n ∈ ω we define Tn = {s ∈ T | |s| = n}. If s ∈ ω<ω then
the cone of s is defined as 〈s〉 = { f ∈ ωω | s ⊆ f }.

All games in the paper are of length ω and we refer to the players simply as player
I and player II. We will refer to the player II as a woman and player I as a man.

If 〈Pα, Q̇α | α � δ〉 is a forcing iteration, α � δ and G ⊆ Pδ is a (V , Pδ)-generic
filter, then Gα denotes Pα ∩ G, which is a (V , Pα)-generic filter. Moreover, we will
write Vα for V [Gα].

Let 〈Pα, Q̇α | α � δ〉 be a countable support iteration. If α � β � δ and G ⊆ Pα

is a (V , Pα)-generic filter, in the extension V [G] we define the forcing Pβ/G =
{p� [α, β) | p ∈ Pβ ∧ p�α ∈ G}. In case we do not need to mention the filter G, we
will simply denote this partial order as Pβ/Pα . It is known that Pβ and Pα ∗ (Pβ/Pα)

are forcing equivalent.

3 The bounding game

In this section, we will study some of the basic properties of the bounding game
and strategically bounding forcings (as defined in the introduction). Obviously, every
σ -closed forcing is strategically bounding. As mentioned before the Sacks, Silver
and random forcings are also strategically bounding. In fact, many definable ωω-
bounding forcings are strategically bounding by the following result of Zapletal (see
[44, Theorem 3.10.7]):

Proposition 3.1 (Zapletal) Let P be a proper ωω-bounding forcing:

(1) If suitable large cardinals exist and P is universally Baire, then P is strategically
bounding.

(2) If P is of the form Borel(2ω)/I where I is a σ -ideal on a Polish space that is 	1
1

on 
1
1 , then P is strategically bounding.3

In this way, we can see that there are many examples of strategically bounding
forcings. We will first look at some simple variations of the bounding game:

Let P be a partial order and p ∈ P. We define BGanti(P, p) (BGdense(P, p),
BGpredense(P, p)) as follows:

I D0 D1 . . .
II B0 B1 . . .

3 The definitions of the undefined notions in this proposition can be consulted in [44] and will not be needed
in this note.
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MAD families and strategically bounding forcings 313

where each Dn ⊆ P is a maximal antichain (dense, predense4) below p and Bn ∈
[Dn]<ω. Player II wins the game if there is q � p such that Bn is predense below q
for every n ∈ ω. As expected, the games are equivalent:

Lemma 3.2 Let P be a partial order and p ∈ P. The following are equivalent:

(1) Player II has a winning strategy in BG(P, p).
(2) Player II has a winning strategy in BGpredense(P, p).
(3) Player II has a winning strategy in BGanti(P, p).
(4) Player II has a winning strategy in BGdense(P, p).

Proof We will first prove that item (1) implies item (2). Given E ⊆ P, denote E↓ =
{r ∈ P | ∃ q ∈ E (r � q)}. We know that if E is predense, then E↓ is an open dense
set. If player II has a winning strategy forBG(P, p), she can obtain a winning strategy
in BGpredense(P, p) as follows:

If at step n of the game, player I plays E in BGpredense(P, p), player II will pretend
she is playing the gameBG(P, p) and player I played E↓. If her response (inBG(P, p))
is {a1, . . . , an} ⊆ E↓, for every i � n she will choose ei ∈ E with ai � ei and play
{e1, . . . , en} ⊆ E as her response in BGpredense(P, p). It is easy to see that this is a
winning strategy.

The fact that item (2) implies item (3) is trivial, since every maximal antichain is
predense. In order to prove that item (3) implies item (4), it is enough to note that
every dense set contains a maximal antichain. Finally, it is clear that item (4) implies
item (1). ��

Fromnowon,wewill onlywriteBG but use the version of the gamemost convenient
for the problem at hand.

Frequently, one can find a stronger version of strategic bounding, which is the
following:

Definition 3.3 Let P be a partial order. We say that P is axiom A for d (or has an axiom
A structure for d) if there is a sequence of partial orders 〈�n〉n∈ω with the following
properties:

• If p �0 q then p � q.
• If p �n+1 q then p �n q for every n ∈ ω.
• (Fusion) If 〈pn〉n∈ω is a sequence such that pn+1 �n pn for every n ∈ ω, then there
is q ∈ P such that q �n pn for every n ∈ ω.

• (Bounding Freezing) For every p ∈ P, A ⊆ P a maximal antichain and n ∈ ω,
there is q �n p such that {r ∈ A | r and q are compatible} is finite.
Clearly if P is Axiom A for d, then P is strategically bounding. The Axiom A

forcings for d are also called “Axiom B forcings” (where “B” is for bounding of
course). We choose the name axiom A for d since it is the natural variation of Axiom
A in order to preserve d (in a similar way, we could define other notions, like axiom A

4 Recall that a set A is predense below a condition p if for every q � p, there is r ∈ A that is compatible
with q. Equivalently, A is predense if p � “A ∩ Ġ 
= ∅” (where Ġ is the canonical name for the generic
filter).
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for cof(N), which would be the natural variation of Axiom A for the Sacks property).
Very recently, Calderón used Axiom A forcings for d in order to solve a long-standing
question due to Bartoszyński and Judah (see [10]).

The following result is easy:

Lemma 3.4 If P is strategically bounding, then P is proper and ωω-bounding.

Proof LetP be a strategically bounding forcing. It is easy to see thatP isωω-bounding,
wewill prove that it is proper. LetM be a countable elementary submodel withP ∈ M .
Let p ∈ M ∩ P and choose σ ∈ M a winning strategy for player II in BG(P, p). Let
{Dn | n ∈ ω} be the collection of all open dense subsets of P that are in M . Consider
the run of BG(P, p) in which player I plays Dn at the step n of the game and player II
is following σ . Note that every response of player II is a finite subset of P ∩ M . Let
q � p be the condition obtained by the victory of player II. It is easy to see that q is
an (M, P)-generic condition. ��

Wenowprovide an example of a properωω-bounding forcing that is not strategically
bounding. Although this can be deduced from Theorem 1.5, a direct proof helps to
gain more insight into strategically bounding forcings.

Proposition 3.5 If T is a Suslin tree, then T is a proper ωω-bounding forcing that is
not strategically bounding.

Proof It is well known that Suslin trees are ccc andω-distributive, so in particular they
are proper ωω-bounding. We argue by contradiction, so assume that T is a Suslin tree
that is strategically bounding. Let σ be a winning strategy for player II in the game
BG(P, s0), where s0 is the root of T . In this proof, we will use the version of the
bounding game where player I is playing maximal antichains.

Let a(T ) denote the partial order of finite antichains of T and order it by inclusion.
It is well known that a(T ) is a ccc partial order (see e.g. [26] or [43]). Let M be a
countable elementary submodel such that T , σ ∈ M , let δ = M ∩ ω1 ∈ ω1, and
enumerate Tδ = {tn | n ∈ ω}5. ��
Claim Let n ∈ ω, β < δ, p ∈ M be a partial play of BG(P, s0) in which player II
is following her strategy and it is the turn of player I. There is α with the following
properties:

(1) β < α < δ.
(2) tn is incompatible with every element of σ(p�Tα) (recall that σ(p�Tα) is a finite

subset of Tα).

In order to prove the claim, let Z = {σ(p�Tα) | β < α}. Since Z is an uncountable
subset of a(T ), we can find α < γ such that σ(p�Tα) and σ(p�Tγ ) are incompatible,
which just means that σ(p�Tα)∪σ(p�Tγ ) is an antichain. Furthermore, by elemen-
tarity, we can assume that α, γ ∈ M (i.e. α, γ < δ). Since σ(p�Tα)∪σ(p�Tγ ) is an
antichain, we know that either tn is incompatible with every element of σ(p�Tα) or
with every element of σ(p�Tγ ) (perhaps both). This finishes the proof of the claim.

5 If T is a tree and α is an ordinal, Tα denotes the elements of T of height α.
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MAD families and strategically bounding forcings 315

By the claim, it is possible for player I to play a match of the game

I Tα0 Tα1 . . .
II B0 B1 . . .

so that

1. 〈αn〉n∈ω is an increasing sequence with limit δ,
2. each Bn was played according to the strategy σ , and
3. tn is incompatible with every element of Bn (for every n ∈ ω).

Since σ is a winning strategy for player II, there must be s ∈ T such that each Bn

is a maximal antichain below s. But by item 1 above, it follows that the height of s is
at least δ, so s must extend an element of each Bn , but this is a contradiction by item
2 above. ��

In particular, it follows that ωω-bounding and ccc does not imply strategically
bounding. An example of a proper ωω-bounding forcing adding reals which is not
strategically bounding was used by A. Miller in [42]. We shall discuss this forcing in
Sect. 5.

4 Indestructibility of ideals andMAD families

In this section, we will find a family of ideals which cannot be destroyed by a strate-
gically bounding forcing. With this, we will be able to answer Problem 1.2 for the
class of strategically bounding forcings. We will need the following game designed
by Claude Laflamme ([31]):

Given an ideal I on ω, define the game L(I) between players I and II as follows:

I A0 A1 ...
II s0 s1 ... sn ∈ I+

At round n ∈ ω player I plays An ∈ I and II responds with sn ∈ [ω\ An]<ω. Player II
wins if

⋃
sn ∈ I+.

Definition 4.1 Let I be an ideal on ω. We say that I is Shelah–Steprāns if II does not
have a winning strategy in L(I).

In the forthcoming [7] with Brendle and Raghavan we found a simpler charac-
terization of this notion. Given an ideal I on ω, by (I<ω)+ we denote the set of all
X ⊆ [ω]<ω \{∅} such that for every A ∈ I there is s ∈ X such that s ∩ A = ∅.

Theorem 4.2 (Brendle, Raghavan [7]) Let I be an ideal onω. The following are equiv-
alent:

(1) I is a Shelah–Steprāns ideal.
(2) For every X ∈ (I<ω)+ there is Y ∈ [X ]ω such that

⋃
Y ∈ I.6

6 In fact, item (2) of the theorem is the original definition of Shelah–Steprāns ideals. This notion was
introduced by Raghavan (under a different name) in [37] .
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In other words, an ideal I is Shelah–Steprāns if and only if for every X ⊆
[ω]<ω \{∅} either there is A ∈ I such that s ∩ A 
= ∅ for every s ∈ X or there
is B ∈ I containing infinitely many elements of X . Since the paper [7] is still not
published, we will avoid making any reference to it in order to make this paper self-
contained. Nevertheless, it is worth pointing out that the motivation for this paper
comes in part from the work of the authors with Brendle and Raghavan. In [17] the
reader can find an application of Shelah–Steprāns ideals.

Definition 4.3 Let A be a MAD family. We say that A is Shelah–Steprāns if the ideal
I(A) is Shelah–Steprāns.

The notion of Shelah–SteprānsMAD family has its origin in the notion of “strongly
separable” introduced by Shelah and Steprāns in [41] where the following is proved
(we include a short argument for the sake of completeness):

Proposition 4.4 ([41]) The Continuum Hypothesis implies that there is a Shelah-
Steprāns MAD family.

Proof Let P be the collection of all countable AD families. If B,D ∈ P, let B � D if
D ⊆ B. If G ⊆ P is a (V , P)-generic filter, define the generic MAD family Agen =⋃

G. It is easy to see that P is a σ -closed forcing and thatAgen is forced to be aMAD
family. ��
Claim If G ⊆ P is a generic filter, then the following holds in V [G]: For every family
{Xn | n ∈ ω} ⊆ (I(Agen)

<ω)+, there is A ∈ Agen such that A contains an element of
each Xn.

To prove the claim, let B ∈ P and {Ẋn | n ∈ ω} be a set of P-names such that B �
“Ẋn ∈ (I(Ȧgen)

<ω)+” for every n ∈ ω. However, since P is σ -closed we may assume
that every Xn ∈ V and the whole set {Xn | n ∈ ω} is also in V . Let B = {Bn | n ∈ ω},
we recursively define a sequence 〈sn〉n∈ω of finite sets such that for every n,m ∈ ω,
the following holds:

• sn ∩ sm = ∅ if n 
= m.
• sn ∈ Xn .
• sn ∩ Bi = ∅ for every i � n.

This is easy to see since each Xn is forced to be in (I(Ȧgen)
<ω)+, so in particular

they are in (I(B)<ω)+. Let A = ⋃
n∈ω sn , it follows that D = B∪{A} is an almost

disjoint family and it forces the desired conclusion.
Since P is σ -closed and V is a model of the Continuum Hypothesis, we can find a

filter G ⊆ P such that if A = ⋃
G, the following holds:

• A is a MAD family.
• For every family {Xn | n ∈ ω} ⊆ (I(A)<ω)+, there is A ∈ A such that A contains
an element of each Xn .

Using the second property, we get the following:

(∗) If T ⊆ ([ω]<ω)<ω is an (I(A)<ω)+-branching tree, then there is a branch 〈sn〉 ∈
[T ] and A ∈ A such that

⋃
n∈ω sn ⊆ A.
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It is easy to see that the property above implies that player II does not have a winning
strategy in L(A). ��

An easier proof of the above result can be done with the aid of Theorem 4.2. The
reader may note that the proof above gives more, it shows that the genericMAD family
added by P is Shelah–Steprāns. This is only a particular case of a more general result
from [7] (where we show that the genericMAD family has a stronger property, which
we call “raving”). For more on the existence of Shelah–Steprāns MAD families, the
reader may consult [7]. A surprising result of Raghavan is that it is consistent that such
families do not exist:

Theorem 4.5 (Raghavan, [37]) It is consistent with ZFC that there are no Shelah–
Steprāns MAD families.

We are now ready to prove that Shelah–Steprāns MAD families are indestructible
by strategically bounding forcing.

Theorem 4.6 If I is a Shelah–Steprāns ideal and P a strategically bounding forcing,
then P does not destroy I.

Proof Let P be strategically bounding and let I be an ideal on ω such that P destroys
I, we will see that I is not Shelah–Steprāns. In particular, we will see that player II has
a winning strategy in the game L(I).

Since P destroys I, there is a P-name Ẋ for an infinite subset of ω forced to be
almost disjoint with every element of I. For every A ∈ I and n ∈ ω, define Dn

A =
{p ∈ P | ∃mp > n (p � “mp ∈ Ẋ \ A”)}. It is clear that each Dn

A is an open dense
subset ofP. Wewill prove that player II has a winning strategy inL(I). Fix σ a winning
strategy for player II in the bounding game BG(P, 1P). While playing the game L(I),
player II will be simulating a game in BG(P, 1P) in which she plays as player I.

0) Let A0 ∈ I be the first move of player I in L(I). Let B0 = σ(〈D0
A0

〉), we know
that it is a finite subset of D0

A0
. By definition, we know that for every p ∈ D0

A0
,

there is mp > 0 such that p � “mp ∈ Ẋ \ A0”. Note that, in particular, mp /∈ A0.
In this way, player II is allowed to play s0 = {mp | p ∈ B0}.

1) Let A1 ∈ I be the next move of player I in L(I). Let B1 = σ(〈D0
A0

, D1
A1

〉),
which is a finite subset D1

A1
. For every p ∈ D1

A1
, there is mp > 1 such that

p � “mp ∈ Ẋ \ A1”. We know that mp /∈ A1, so player II is allowed to play
s1 = {mp | p ∈ B1}.

...

eral, at step n, player I has played 〈A0, . . . , An〉. During the match, player II is
secretly building a run 〈D0

A0
, B0, . . . , Dn

An
, Bn〉 in BG(P, 1P) in which each

Bn was played according to σ . Furthermore, at the l round of the game L(I),
she played sl = {mp | p ∈ Bm} (where mp > l and p � “mp ∈ Ẋ \ Ap”.

n + 1) Let An+1 ∈ I be the next move of player I in L(I). Let

Bn+1 = σ
(〈
D0

A0
, . . . , Dn+1

An+1

〉)
,
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which is a finite subset Dn+1
An+1

. For every p ∈ Dn+1
An+1

, there ismp > n+1 such

that p � “mp ∈ Ẋ \ An+1”. Now, player II plays sn+1 = {mp | p ∈ Bn+1}.
I A0 A1 . . .
II s0 = {mp | p ∈ B0} s1 = {mp | p ∈ B1} . . .

I D0
A0

D1
A1

. . .

II B0 B1 . . .

We will prove that player II was the winner in the match of L(I). In order to
prove this, since the side game in BG(P, 1P) was played using σ , player II of that
simulated match, was the winner. This means that there is q ∈ P such that each Bn

is predense below q. This implies that q � “sn ∩ Ẋ 
= ∅” for every n ∈ ω (recall
that sn = {mp | p ∈ Bm}). Let Y = ⋃

n∈ω sn it is clear that Y is an infinite set and
q � “|Y ∩ Ẋ | = ω”. Since Ẋ is forced to be almost disjoint from every element of I,
it follows that Y ∈ I+, which means that player II was the winner of the match. ��

In this way, we conclude the following:

Corollary 4.7 (1) IfA is a Shelah–SteprānsMAD family and P is strategically bound-
ing, then P does not destroy A.

(2) If V |�CH and P is a strategically bounding forcing, then P �“a = ω1”.

Moreover, later in this paper we will prove that the countable support iteration of
strategically bounding forcings is strategically bounding. These two results are useful
in computing the almost disjointness number in many forcing extensions.

We will now provide another limitation of strategically bounding forcings. Recall
that ♦ is the following statement:

♦ There is D = {Dα | α ∈ ω1} with Dα ⊆ α such that for every X ⊆ ω1, the set
{α | X ∩ α = Dα} is stationary.
In [24] the second author introduced a diamond principle associated to the domi-

nating number:

♦d There is a sequence 〈dα | α < ω1〉 where dα : α −→ ω such that for every
f : ω1 −→ ω the set {α > ω | f � α �∗dα} 
= ∅. The sequence is called a ♦d-
sequence.

Above, f � α �∗dα means that the set {ξ < α | dα(ξ) < f (ξ)} is finite. It is easy to
see that ♦d implies that d = ω1. The motivation for introducing the principle ♦d was
also the problem of Roitman. While it is unknown if d = ω1 suffices to construct a
MAD family of size ω1, it is possible to do it with ♦d:

Proposition 4.8 ([24]) ♦d implies a = ω1.

In [24] it is proved that forcing with a large measure algebra over a model of ♦
gives a model of ♦d. On the other hand, in [16] the first author proved that ♦d holds
in the model of [38] (see [16,38] and [11] to learn more about this interesting model).
The next theorem generalizes both results.

By LIM(ω1) we denote the set of all countable limit ordinals. We start with a
lemma:
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Lemma 4.9 Let V |� ♦, P be a forcing notion and κ a large enough regular cardinal.
There is a sequence 〈(Mα, pα, ḟα)〉α∈LIM(ω1) such that for every α ∈ LIM(ω1) the
following holds:

(1) Mα is a countable elementary submodel of H(κ) such that P, pα, ḟα ∈ Mα .
(2) pα ∈ P and pα � “ḟα : ω1 −→ ω”.

The sequence 〈(Mα, pα, ḟα)〉α∈LIM(ω1) has the property that for every p ∈ P and
ḟ such that p � “ḟ : ω1 −→ ω”, there is a countable N � H(κ) and α < ω1 such
that the following conditions hold:

(1) P, p, ḟ ∈ N.
(2) Mα ∩ ω1 = α.
(3) The structures (N ,∈, P,�P, p, ḟ ) and (Mα,∈, P,�P, pα, ḟα) are isomorphic.7

Proof Using♦we can find a sequence 〈Aα = (α,�α, Pα,�α, rα, hα)〉α∈LIM(ω1) such
that for every structureA = (ω1,�, P,�, r , h) there are stationary many α such that
Aα is a substructure of A. Given α a limit ordinal, in case there are a countable
M � H(κ), p ∈ P, ḟ such that P, p, ḟ ∈ M, M ∩ α = α, p � “ ḟ : ω1 −→ ω”
and (M,∈, P,�P, p, ḟ ) is isomorphic to Aα then we choose one of them and define
Mα = M , pα = p and ḟα = ḟ . If there is no M satisfying those properties, we
just take any (Mα, pα, ḟα) satisfying the properties (1) and (2). We will now prove
D = {(Mα, pα, ḟα) | α ∈ LIM(ω1)} has the desired properties.

Let p ∈ P and ḟ be such that p � “ ḟ : ω1 −→ ω”. Recursively, we build
{Nα | α < ω1} a continuous ∈-chain of countable elementary submodels of H(κ)

such that p, ḟ , P ∈ N0. Let N = ⋃
α∈ω1

Nα , since N has size ω1, then we can define
a structure A = (ω1,�, P,�, r , h) that is isomorphic to (N ,∈, P,�P, p, ḟ ). Let
F : ω1 −→ N be an isomorphism.

It is easy to see that {α ∈ LIM(ω1) | Nα ∩ ω1 = α ∧ F[α] = Nα} is a club.
In this way, we can find a limit α such that F[α] = Nα , Nα ∩ ω1 = α and Aα is a
substructure of A. Note that Nα, p and ḟ satisfy the conditions of the definition at
step α, so (Mα,∈, P,�P, pα, ḟα) is isomorphic to Aα hence it is also isomorphic to
(N ,∈, P,�P, p, ḟ ). ��

We can now prove the theorem:

Theorem 4.10 Let V |� ♦. If P is a strategically bounding forcing, then P �“♦d”.

Proof Fix a sequence 〈(Mα, pα, ḟα)〉α∈LIM(ω1) as in Lemma 4.9. We want to define
the sequence D = {dα : α −→ ω | α < ω1}. Let α ∈ ω1. In case Mα ∩ ω1 
= α,

7 In here, a function g : N −→ Mα is an isomorphism if for every a, b ∈ N , the following conditions hold:

(a) g is bijective.
(b) a ∈ b if and only if g(a) ∈ g(b).
(c) g(P) = P.
(d) g(p) = pα .
(e) g( ḟ ) = g( ḟα).
(f) For every x1, . . . , xn ∈ N and ϕ a set-theoretic formula, a �P “ϕ(x1, . . . , xn)” if and only if

g(a) �P “ϕ(g(x1), . . . , g(xn))”.
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let dα be any constant function. Now, fix α such that Mα ∩ ω1 = α, and choose an
enumeration α = {αn | n ∈ ω}. Let σα ∈ Mα be a winning strategy for BG(P, pα).
For every n ∈ ω, define Dα

n = {q � pα | ∃m (q �“ ḟα(αn) = m ”)}. It is clear that
Dα
n is an open dense set below pα and Dα

n ∈ M . Consider the following run of the
game BG(P, pα): ��

I Dα
0 Dα

1 . . .
II Bα

0 Bα
1 . . .

where each Bα
n is played according to the strategy σα . Note that although the whole

sequence 〈Dα
n 〉n∈ω is not in Mα , every initial segment of it is.

For every q ∈ Dα
n , let m

q
αn ∈ ω be such that q �“ ḟα(αn) = mq

αn”. Finally,
define the function dα : α −→ ω such that dα(αn) = max{mq

αn | q ∈ Bα
n } + 1. Let

D = {dα | α ∈ ω1}. We will prove that D is a ♦d-sequence after forcing with P.
Let p ∈ P and ḟ aP-name such that p � “ ḟ : ω1 −→ ω ”. By Lemma 4.9, we know

that there is a countable N � H(κ) and α < ω1 such that the following conditions
hold:

1. P, p, ḟ ∈ N .
2. Mα ∩ ω1 = α.
3. The structures (N ,∈, P,�P, p, ḟ ) and (Mα,∈, P,�P, pα, ḟα) are isomorphic.

Let H : Mα −→ N be (the unique) isomorphism given by point 3. Recall that
H(P) = P, H(pα) = p and H( ḟα) = ḟ . Recall that if q ∈ Bα

n , then q has the
following properties:

1. q � pα .
2. q �“ ḟα(αn) = mq

αn”.

Since H is an isomorphism (and countable ordinals are fixed by isomorphisms) it
follows that:

1. H(q) � p.
2. H(q) �“ ḟ (αn) = mq

αn”.

Furthermore, H(σα) is a winning strategy in BG(P, p)8 and for every n ∈ ω,
the sequence Ln = 〈H(Dα

0 ), H(Bα
0 ), . . . , H(Dα

n ), H(Bα
n )〉 is a legal partial play in

BG(P, p) in which player II is following H(σα). Let L = ⋃
n∈ω Ln , since every initial

segment of L is a partial play in which player II is following a winning strategy, it
follows that L is a run of the game and player II was the winner (note that L /∈ N ,
but it does not matter, the important point is that every Ln ∈ N ). Since player II was
the winner, there is r � p such that each H(Bα

n ) = H [Bα
n ] is predense below r . It

follows that r � “ ḟ �α � ḟα” and we are done. ��

5 Strategically bounding forcings and tree-MAD families

Let A be a subfamily of [ω<ω]ω. We will say that A is a tree-AD family if it is an AD
family and every element of A is a finitely branching tree. We will say that A is a

8 Recall thatσα is awinning strategy inBG(P, pα). Since H is an isomorphism, H(P) = P and H(pα) = p,
it follows that H(σα) is a winning strategy in BG(P, p).
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tree-MAD family if it is a maximal tree-AD family. Note that tree-MAD families are not
MAD families of [ω<ω]ω (for example, if A is a tree-MAD family, then ω1 is almost
disjoint from every element of A).

Definition 5.1 aT is the smallest size of a tree-MAD family.

This cardinal invariant has been studied (although not necessarily by that name) in
[19,34,36,42] and [18].

We shall fix some notation first: If x ∈ ω�ω, we denote x̂ = {x� n | n ∈ ω} ⊆ ω<ω.
Furthermore, if B ⊆ ω�ω, we define B̂ = {̂x | x ∈ B}. The following result is
well-known, we prove it here for completeness:

Lemma 5.2 Let A be a tree-AD family.

(1) A is a tree-MAD family if and only if {[T ] | T ∈ A} is a partition of ωω into
compact sets.

(2) aT is the smallest size of a partition of ωω into compact sets.

Proof First, assume that A is a tree-MAD family. Since A is an AD family, it follows
that [T ] ∩ [S] = ∅ whenever T , S ∈ A and T 
= S. Now, if x ∈ ωω we have that x̂
is an infinite tree. By the maximality of A, there must be T ∈ A such that x̂ ∩ T is
infinite. Since T is a tree, it follows that x ∈ [T ]. In order to prove the second item
of the lemma, let C be a partition of ωω in compact sets. It is well known that every
compact subset of ωω is of the form [T ] for some finitely branching T (see [28]).
Furthermore, it follows by König’s lemma that if T and S are two finitely branching
trees, then T ∩ S is finite if and only if [T ] ∩ [S] = ∅. The result follows by this
observation and the first point of the lemma. ��

It is well known that d is the smallest size of a cover of ωω of compact sets (see
[2]). From this remark, it follows that d � aT . Using a forcing of Miller [34], Spinas
proved the following (see [42]):

Theorem 5.3 (Spinas) There is a model of ZFC where d < aT .

In contrast with this result, in [35] Džamonja, Moore and the second author proved
the following:

Theorem 5.4 ♦d implies aT = ω1.

Let A be a tree-MAD family and P a forcing notion. We say that P destroys A if A
is no longer a tree-MAD family after forcing with P. If P does not destroy A, we say
that P preserves A. By Lemma 5.2, we have the following:

Corollary 5.5 Let A be a tree-MAD family and P a partial order. The following are
equivalent:

(1) P destroys A.
(2) There is ṙ a P-name for a branch such that P �“ṙ /∈ [T ]” for every T ∈ A.
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In this section we present an analogue of Corollary 4.7 for tree-MAD families.
We need some further notation. If T ⊆ ω<ω is a finite tree, by [T ] we denote the

maximal nodes of T . If T , S ⊆ ω<ω are trees, we say that S is an end-extention of T
(denoted by T � S) if T ⊆ S and every s ∈ S \T extends an element of [T ]. Note
that if {Tn | n ∈ ω} is a set of finitely branching trees such that Tn � Tn+1 for every
n ∈ ω, then

⋃
Tn is a finitely branching tree. We will now introduce the following

game:
Let A be a tree-MAD family. Define the game LT (A) between players I and II as

follows:

I A0 A1 . . .
II L0 L1 . . .

The game is played so that for every n ∈ ω, the following holds:

1. An is the union of finitely many trees of A (so An ∈ I(A)).
2. Ln is a finitely branching tree such that [Ln] ∩ An = ∅.
3. Ln � Ln+1.

We will say that player II won the match if
⋃

n∈ω Ln ∈ I(A)+.

Definition 5.6 Let A be a tree-MAD family. We say that A is tree Shelah–Steprāns if
player II does not have a winning strategy in the game LT (A).

The desired analogue of Corollary 4.7 is the following:

Theorem 5.7 Let A be a tree-MAD family and P a strategically bounding forcing. If
A is a tree Shelah–Steprāns family, then P preserves A.

Proof Let P be a strategically bounding forcing and A a tree-MAD family that is
destroyed by P, we will show that A is not a tree Shelah–Steprāns family (i.e. player
II has a winning strategy in the game LT (A)).

Since P destroys A, we know that there is a P-name ṙ for an element of ωω such
that P �“ṙ /∈ [T ]” for every T ∈ A. Given p ∈ P define z p = ⋃ {t ∈ ω<ω | p �
“t ⊆ ṙ ′′}. Since ṙ must be the name for a new real, it follows that z p ∈ ω<ω for every
p ∈ P. For every A ⊆ ω<ω that is the union of finitely many trees of A and n ∈ ω,
define Dn(A) = {p ∈ P | z p /∈ A ∧ |z p| > n}. It is easy to see that each Dn(A) is an

open dense subset of P. Let X ⊆ P, define Z(X) = {z p | p ∈ X} and Ẑ(X) = Ẑ(X).
Finally, if Y ∈ [P]<ω define E(Y ) as the set of all p ∈ P such that one of the following
conditions holds:

1. p extends an element of Y , or
2. p is incompatible with every element of Y .
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It is easy to see that E(Y ) is an open dense subset of P. We will now describe a
winning strategy for player II in the gameLT (A). Fix σ a winning strategy for player II
in theBG(P, 1P). While playing the game LT (A), player II will be simulating a game
in BG(P, 1P) in which she pretends she is the player I for that game.

(0) Let A0 be thefirstmoveof player I inLT (A). Let D0 = D0(A0) and B0 = σ(〈D0〉).
Now, player II plays L0 = Ẑ(B0) in LT (A).

(1) Let A1 be the next move of player I in LT (A). Let D1 = D1(A1) ∩ E(B0) and
B1 = σ(〈D0, D1〉). Let C1 be the elements of B1 that extend an element of B0.
Now, player II plays Ẑ(C1).

(n + 1) In general at step n, player I has played 〈A0, . . . , An〉. During the match,
player II is secretly building a run 〈D0, B0, . . . , Dn, Bn〉 in BG(P, 1P) and
〈C0, . . . ,Cn〉 with the following properties:

(a) Each Dn is open dense and the Bn are played following σ .
(b) D0 = D0(A0) and C0 = B0.
(c) Ci+1 is the set of elements of Bi+1 that extend an element of Ci .
(d) Di+1 = Di (Ai ) ∩ E(Ci ).

Furthermore, at the round l of the game LT (A), she played Ẑ(Cl).
Now, let An+1 be the next move of player I in LT (A). We define the items as above
and continue.

We will prove that player II was the winner in the match of LT (A). In order to
prove this, since the side game in BG(P, 1P) was played using σ , player II of that
simulated match, was the winner. This means that there is q ∈ P such that each Bn

is predense below q. Furthermore, by a simple induction this implies that each Cn is
predense below q. This implies that q � “̂r ∩ [Ẑ(Cn)] 
= ∅” for every n ∈ ω. Let
L = ⋃

n∈ω Ẑ(Cn), it is clear that Y is a finitely branching tree and q � “ṙ ∈ [L]”.
Since ṙ is forced to not be in the branches of every element of A, it follows that
L ∈ I(A)+, which means that player II was the winner of the match. ��

A similar argument as the one of Proposition 4.4 gives the following:

Proposition 5.8 The Continuum Hypothesis implies that there is a tree Shelah–
Steprāns MAD family.

In this way, we conclude the following:

Corollary 5.9 If V |�CH and P is strategically bounding then P �“aT = ω1”.

With these results, we can get a more interesting example of a proper ωω-bounding
forcing that is not strategically bounding. The following forcing notionwas introduced
by Miller in [34]:

Definition 5.10 Let A be a tree-MAD family. P(A) is the collection of all p such that
the following holds:

• p ⊆ ω<ω is a tree such that every s ∈ p has at most two immediate successors
and every node in p can be extended to a splitting node.
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• If T ∈ A, then [T ] ∩ [p] is nowhere dense in [p].
If p, q ∈ P(A), then p � q if and only if p ⊆ q.

In [34] Miller proved that the forcing P(A) is a proper forcing and that it destroys
A. Furthermore, in [42] Spinas proved that P(A) is ωω-bounding. Hence:

Corollary 5.11 If A is a tree Shelah–Steprāns MAD family, then P(A) is a proper
ωω-bounding forcing which is not strategically bounding.

6 Iteration of strategically bounding forcings

In this section, we will prove that the countable support iteration of strategically
bounding forcings is strategically bounding. This is particularly useful when combined
with Theorems 4.6 and 4.10. Our proof for the limit case is based on the proof of
preservation of properness on the first pages of chapter XII of Shelah’s [39]. This
proof can probably be used to obtain alternative proofs of other iteration theorems.
No previous knowledge of this proof is needed.

We start with a simple observation:

Lemma 6.1 Let P, Q be partial orders such that P is a dense suborder of Q. If P is
strategically bounding, then Q is strategically bounding.

Proof Let q ∈ Q, we must prove that player II has a winning strategy in BG(Q, q).
Since P is dense in Q, we can find p ∈ P extending q. Let σ be a winning strategy for
player II in theBG(P, p). Given D ⊆ Q an open dense set below q, define D = D∩P.
It is easy to see that D is open dense below p.

We will now teach player II how to win in the BG(Q, q).

(0) Let D0 ⊆ Q be the first move of player I. We know that D0 is a valid move for
player I in BG(P, p). Player II will play B0 = σ(〈D0〉) in BG(Q, q).
(1) Let D1 ⊆ Q be the next move of player I. We know that D1 is a valid move for
player I in BG(P, p). Player II will play B1 = σ(〈D0, D1〉) in BG(Q, q).
...

BG(Q, q)

I D0 D1

II B0 B1

BG(P, p)

I D0 D1

II B0 B1

It is easy to see that this describes a winning strategy for player II in BG(Q, q). ��
In particular, it follows that if P is strategically bounding, then its Boolean comple-

tion is also strategically bounding. We will also need the following:

Lemma 6.2 Let P be a partial order, Q̇ a P-name for a partial order and D ⊆ P∗Q̇

an open dense set.
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(1) If G ⊆ P is a (V , P)-generic filter, then (in V [G]).
DG = {q̇[G] | ∃ p ∈ G ((p, q̇) ∈ D)} is an open dense subset of Q̇[G].

(2) Let Ẋ be a P-name for a finite subset of DĠ. Define DP,Ẋ as the set of all p ∈ P

such there is a set {q̇1, . . . , q̇n} for which the following conditions hold:

(a) p � “Ẋ = {q̇1, . . . , q̇n}”.
(b) (p, q̇i ) ∈ D for every i � n.

Then DP,Ẋ is an open dense subset of P.

Proof The first part of the lemma is well known and may be consulted in [26], the
second part is straight forward. ��
We can now prove the preservation result for the successor case:

Proposition 6.3 If P is strategically bounding and P � “Q̇ is strategically
bounding”, then P∗Q̇ is strategically bounding.

Proof Let (x, ẏ) ∈ P ∗ Q̇, we need to prove that player II has a winning strategy on
BG(P∗Q̇, (x, ẏ)). Let σ be a winning strategy for player II in BG(P, x) and let π̇ be
the name for a winning strategy for player II in BG(Q̇, ẏ). We define a strategy for
player II in the BG(P∗Q̇, (x, ẏ)) as follows:

At step 0, assume that player I plays an open dense set D0 ⊆ P∗Q̇. By Lemma 6.2,
we know that DĠ

0 = {q̇[Ġ] | ∃ p ∈ Ġ ((p, q̇) ∈ D0)} is forced to be an open dense

set of Q̇[Ġ] (where Ġ is the P-name for the generic filter). In this way, Ẋ0 = π̇(DĠ
0 )

is a P-name for a finite subset of DĠ
0 . Again by Lemma 6.2, we know that DP,Ẋ0 is

an open dense subset of P. Consider σ(DP,Ẋ0). We know that σ(DP,Ẋ0) is a finite set.
For every p ∈ σ(DP,Ẋ0), there is Y 0

p a finite set of P-names for elements of Q̇ such

that p � “Ẋ0 = {q̇ | q̇ ∈ Y 0
p}”. Finally, player II will play (in BG(P∗Q̇, (x, ẏ))) the

set E0 = {(p, q̇) | p ∈ σ(DP,Ẋ0) ∧ q̇ ∈ Y 0
p}. It is easy to see that E0 is a finite subset

of D.
BG(P∗Q̇, (x, ẏ))

I D0

II

BG(Q̇[G], ẏ[G])
I DĠ

0
II X0

where X0 = π̇(DĠ
0 ).

BG(P, x)

I DP,Ẋ0

II σ(DP,Ẋ0)

In general, at step n + 1, player I has played D0, . . . , Dn and player II played the
sets E0, . . . , En . Also secretly, she has constructed the sets 〈Ẋ0, . . . , Ẋn〉 such that
for every i � n, the following holds:
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1. Ẋi = π̇(DĠ
0 , . . . , DĠ

i ).

2. For every p ∈ σ(DP,Ẋ0
0 , DP,Ẋ1

1 , . . . , DP,Ẋi
i ), there is a finite set Y i

p of P-names for

elements of Q̇ such that p �“Ẋi = {q̇[Ġ] | q̇ ∈ Y i
p}”.

3. Ei = {(p, q̇) | p ∈ σ(DP,Ẋ0
0 , DP,Ẋ1

1 , . . . , DP,Ẋi
i ) ∧ q̇ ∈ Y i

p}.
The game continues in the natural way. Player I plays Dn+1, define Ẋn+1 =

π̇(DĠ
0 , . . . , DĠ

n+1), for every p ∈ σ(DP,Ẋ0
0 , DP,Ẋ1

1 , . . . , DP,Ẋn+1
n+1 ), let Yn+1

p be such

that p � “Ẋn+1 = {q̇[Ġ] | q̇ ∈ Yn+1
p }”. Finally, Player II plays En+1 = {(p, q̇) | p ∈

σ(DP,Ẋ0
0 , DP,Ẋ1

1 , . . . , DP,Ẋn+1
n+1 ) ∧ q̇ ∈ Yn+1

p }.
We claim that this is awinning strategy for player II. In order to achieve this, wemust

prove that (x, ẏ) has an extension in which every En is predense. For every n ∈ ω,
let Fn = {p ∈ P | ∃ q̇ (p, q̇) ∈ En}. Note that the sequence 〈Fn〉n∈ω corresponds

to a run of the game BG(P, x) where player I played DP,Ẋn
n at step n (i.e. Fn =

σ(DP,Ẋ0
0 , DP,Ẋ1

1 , . . . , DP,Ẋn
n ) for every n ∈ ω). Since σ is a winning strategy for

player II, there is a � x such that Fn is predense below a for every n ∈ ω.
Let G ⊆ P be a generic filter with a ∈ G. For the moment, we will work in the

extension V [G]. Note that the sequence 〈Ẋn[G]〉n∈ω corresponds to a run of the game
BG(Q̇[G], ẏ[G])where player I played DG

n at step n. Since π̇ [G] is a winning strategy
for player II, there is ḃ[G] � ẏ[G] such that Ẋn[G] is predense below ḃ[G] for every
n ∈ ω. We may assume (by extending a if necessary) that a � “ḃ � ẏ”and that a
forces that each Ẋn if predense below ḃ. In this way, we have that (a, ḃ) � (x, ẏ). We
will now prove that each En is predense below (a, ḃ).

Let (p1, q̇1) � (a, ḃ) and n ∈ ω. Since Fn is predense below a, there is p2 ∈ Fn
that is compatible with p1, find r � p1, p2. Since r � p2, we know that r �
“Ẋn = {q̇ | q̇ ∈ Yn

p2}”. Now, Ẋn is forced to be predense below ḃ (recall that r
extends a), so we can find r1 � r and q̇2 ∈ Yn

p2 such that r1 � “q̇2 ‖ q̇1”. Let q̇ be a
P-name such that r1 � “q̇3 � q̇1, q̇2”. In this way, we have that (r1, q̇3) � (p1, q̇1)
and extends an element of En (namely, (p2, q̇2)). ��

We will recall a well-known forcing lemma that will be often used implicitly (for
a proof, see Lemma 1.19 in the first chapter of [39]). This lemma is often referred as
the “definition by cases Lemma”:

Lemma 6.4 Let P be a partial order, A = {pα | α ∈ κ} ⊆ P a maximal antichain and
{ẋα | α ∈ κ} be a set of P-names. There is a P-name ẏ such that pα � “ẏ = ẋα” for
every α ∈ κ .

We will now prove the preservation at limit steps. Below, if 〈Pα, Q̇α | α � δ〉 is a
countable support iteration and p ∈ Pδ , by sop(p) we denote the support of p.

Theorem 6.5 Let δ be a limit ordinal and 〈Pα, Q̇α | α � δ〉 a countable support iter-
ation of forcings. If Pα �“Q̇α is strategically bounding” for every α < δ, then Pδ is
strategically bounding.

Proof By Lemma 6.1, we may assume that each Q̇α is forced to be a Boolean algebra.
Let p ∈ Pδ . We need to prove that player II has a winning strategy in BG(Pδ, p).
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Let D0 be the first move of player I in BG(Pδ, p).

BG(Pδ, p)

I D0

II

Let γ0 = 0 and find p0 � p such that p0 ∈ D0. Player II will play B0 = {p0} as
her first move.

Let D1 be the next move of player I in PG(Pδ, p).

PG(Pδ, p)

I D0 D1

II B0

Choose γ1 ∈ sop(p0) with γ1 
= γ0. We have that γ0 < γ1.

We now go to Vγ1+1
Let E1 = {q ∈ Pδ/Pγ1+1 | ∃ a ∈ Gγ1+1 (a�q ∈ D1)}. It is easy to see that E1 is

an open dense subset of the quotient Pδ/Pγ1+1. In this way, we can find a condition
q10 � p0� (γ1 + 1, δ) such that q10 ∈ E1.

We now go to Vγ1

In here, let q̇10 be a Qγ1 -name for q10. Define Dγ1
0 = {b ∈ Qγ1 | ∃ qb10(b �

“q̇10 = qb10”)}, which is an open dense subset of Qγ1 . Consider a run of the game
BG(Qγ1 , p0(γ1)) in which player I played Dγ1

0 as his first move. Let Bγ1
0 be the

response of player II (where she is following her winning strategy for this game, recall
that Qγ1 was forced to be a strategically bounding forcing).

BG(Qγ1 , p0(γ1))

I Dγ1
0

II Bγ1
0

Let Bγ1
0 = {a1, . . . , an} and for every i � n let qi10 be such that ai � “q̇10 = qi10”.

We now define q̂10 a Qγ1 -name for an element of Pδ/Pγ1+1 such that the following
conditions hold:

1. a1 � “q̂10 = q110”.
2. a∗

1 ∧ a2 � “q̂10 = q210”.
9

3. a∗
1 ∧ a∗

2 ∧ a3 � “q̂10 = q310”.
...

n. a∗
1 ∧ . . . ∧ a∗

n−1 ∧ an � “q̂10 = qn10”.
n + 1. a∗

1 ∧ . . . ∧ a∗
n−1 ∧ a∗

n � “q̂10 = p0� (γ1 + 1, δ)”.

This is possible by the “definition by cases lemma”. We now define Aγ1
0 = {ai�q̂10 |

i � n}. Note that Aγ1
0 ⊆ Pδ/Pγ1 and every element of it extends p0� (γ1, δ).

9 If B is a Boolean algebra and b ∈ B, we denote by b∗ as the complement of b.
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We now go to Vγ0+1
In Vγ0+1 we may take q11 � p0� (γ0 + 1, γ1) such that there is Cγ1

0 such that
q11 � “ Ȧγ1

0 = Cγ1
0 ”.

We now go to Vγ0 = V
In here, let q̇11 be a Qγ0 -name for q11. Define Dγ0

0 = {b ∈ Qγ 0 | ∃ qb11(b �“q̇11 =
qb11”)}, which is an open dense subset of Qγ 0. Consider a run of the game
BG(Qγ0 , p0(γ0)) in which player I played Dγ1

0 as his first move. Let Bγ1
0 be the

response of player II (where she is following her winning strategy).

BG(Qγ0 , p0(γ0))

I Dγ0
0

II Bγ0
0

Let Bγ1
0 = {b1, . . . , bm} and for every i � m let qi11 be such that bi � “q̇11 = qi11”.

We now define q̂11 a Qγ0 -name for an element of Pγ1/Pγ0+1 such that the following
conditions hold:

1. b1 � “q̂11 = q111”.
2. b∗

1 ∧ b2 � “q̂11 = q211”.
...

n. b∗
1 ∧ . . . ∧ b∗

m−1 ∧ bm � “q̂11 = qm11”.
n + 1. b∗

1 ∧ . . . ∧ b∗
n−1 ∧ b∗

m � “q̂11 = p0� (γ0 + 1, γ1)”.

We now define Aγ1
0 = {bi�q̂11 | i � m}. Note that Aγ1

0 ⊆ Pδ/Pγ1 and every element
of it extends p0� (γ1, δ). Now, let B1 be the set of all elements of the form

b�q̂11
�a

such that

1. b ∈ Bγ0
0 .

2. b�q̂11 � “a ∈ Ȧγ1
0 ”.

Finally, player II plays B1 in BG(Pδ, p).

BG(Pδ, p)

I D0 D1

II B0 B1

Let p2 = p1(γ0)�q̂11� p1(γ1)�q̂10. Note that p1(γ0) knows a countable super-
set of the support of q̂11, while p1(γ0)�q̂11� p1(γ1) knows a countable superset of
the support of q̂10. This is the reason why although formally p2 is a condition in
Qγ0∗P(γ0,γ1)∗Qγ1∗P(γ1,δ), we may identify it with a condition in Pδ . Let D2 be the
next move of player I in BG(Pδ, p).
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BG(Pδ, p)

I D0 D1 D2

II B0 B1

Choose γ2 ∈ sop(p1) with γ2 /∈ {γ0, γ1}. For convenience, assume that γ0 < γ2 <

γ1.
We now go to Vγ1+1
Let E2 = {q ∈ Pδ/Pγ1+1 | ∃ a ∈ Gγ1+1 (a�q ∈ D2)}. It is easy to see that E2 is

an open dense subset of the quotient Pδ/Pγ1+1. In this way, we can find a condition
q20 � p2� (γ1 + 1, δ) such that q20 ∈ E2.

We now go to Vγ1

In here, let q̇20 be a Qγ1 -name for q20. Define Dγ1
1 = {b ∈ Qγ1 | ∃ qb20 (b �“q̇20 =

qb20”)}, which is an open dense subset of Qγ1 . Let player I play Dγ1
1 as his next move

in BG(Qγ1 , p0(γ1)). Let B
γ1
1 be the response of player II (where she is following her

winning strategy).

BG(Qγ1 , p0(γ1))

I Dγ1
0 Dγ1

1
II Bγ1

0 Bγ1
1

Let Bγ1
1 = {a1, . . . , an} and for every i � n let qi20 be such that ai � “q̇20 = qi20”.

We now define q̂20 a Qγ1 -name for an element of Pδ/Pγ1+1 such that the following
conditions hold:

1. a1 � “q̂20 = q120”.
2. a∗

1 ∧ a2 � “q̂20 = q220”.
3. a∗

1 ∧ a∗
2 ∧ a3 � “q̂20 = q320”.

...

n. a∗
1 ∧ . . . ∧ a∗

n−1 ∧ an � “q̂20 = qn20”.
n + 1. a∗

1 ∧ . . . ∧ a∗
n−1 ∧ a∗

n � “q̂20 = p2� (γ1 + 1, δ)”.

We now define Aγ1
1 = {ai�q̂10 | i � n}. Note that Aγ1

1 ⊆ Pδ/Pγ1 and every
element of it extends p2� (γ1, δ).

We now go to Vγ2+1
In Vγ2+1 we may take q21 � p2� (γ2 + 1, γ1) such that there is Cγ1

1 such that
q11 � “ Ȧγ1

1 = Cγ1
1 ”.

We now go to Vγ2

In here, let q̇21 be a Qγ2 -name for q21. Define D
γ2
0 = {b ∈ Qγ 0 | ∃ qb21 (b �“q̇21 =

qb21”)}, which is an open dense subset of Qγ 0. Consider a run of the game
BG(Qγ2 , p2(γ2)) in which player I played Dγ2

0 as his first move. Let Bγ2
0 be the

response of player II (where she is following her winning strategy).

BG(Qγ2 , p2(γ2))
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I Dγ2
0

II Bγ2
0

Let Bγ2
0 = {b1, . . . , bm} and for every i � m let qi21 be such that bi � “q̇21 = qi21”.

We now define q̂21 a Qγ2 -name for an element of Pγ1/Pγ2+1 such that the following
conditions hold:

1. b1 � “q̂21 = q121”.
2. b∗

1 ∧ b2 � “q̂21 = q221”.
...

m. b∗
1 ∧ . . . ∧ b∗

m−1 ∧ bm � “q̂21 = qm21”.
m + 1. b∗

1 ∧ . . . ∧ b∗
m−1 ∧ b∗

m � “q̂21 = p2� (γ2 + 1, γ1)”.

We now define Aγ2
0 = {bi�q̂21 | i � m}. Note that Aγ2

0 ⊆ Pγ1/Pγ2 and every
element of it extends p2� (γ2, γ1).

We now go to Vγ0+1
In Vγ0+1 we may take q22 � p2� (γ0 + 1, γ2) such that there is Cγ2

0 such that
q22 � “ Ȧγ2

0 = Cγ2
0 ”.

We now go to Vγ0 = V
In here, let q̇22 be a Qγ0 -name for q22. Define Dγ0

1 = {b ∈ Qγ0 | ∃ qb22(b �“q̇22 =
qb22”)}, which is an open dense subset of Qγ0 . Let player I play Dγ0

1 as his next move
in BG(Qγ0 , p0(γ0)). Let B

γ0
1 be the response of player II (where she is following her

winning strategy).

BG(Qγ0 , p0(γ0))

I Dγ0
0 Dγ0

1
II Bγ0

0 Bγ0
1

Let Bγ0
1 = {c1, . . . , cl} and for every i � l let qi22 be such that ci � “q̇22 = qi22”.

We now define q̂22 a Qγ0 -name for an element of Pγ2/Pγ1+1 such that the following
conditions hold:

1. c1 � “q̂11 = q122”.
2. c∗

1 ∧ c2 � “q̂22 = q222”.
...

l. c∗
1 ∧ . . . ∧ c∗

l−1 ∧ cl � “q̂22 = ql22”.
l + 1. c∗

1 ∧ . . . ∧ c∗
l−1 ∧ c∗

l � “q̂22 = p2� (γ0 + 1, γ2)”.

We now define Aγ2
0 = {ci�q̂22 | i � l}. Note that Aγ1

0 ⊆ Pδ/Pγ1 and every element
of it extends p2� (γ0, γ2). Now, let B2 be the set of all elements of the form

c�q̂22
�b�a

such that

1. c ∈ Bγ0
1 .
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2. c�q̂22 � “b ∈ Ȧγ2
0 ”.

3. c�q̂22�b � “ Ȧγ1
1 ”.

Finally, player II plays B2 in BG(Pδ, p).

BG(Pδ, p)

I D0 D1 D2

II B0 B1 B2

Let p3 = p2(γ0)�q̂22� p2(γ2)�q̂21� p2(γ1)�q̂20.

The game continues in this way. Furthermore, by carefully choosing each γn , we
make sure that

⋃
n∈ω sop(pn) = {γn | n ∈ ω}. We now define a condition r1 ∈ Pδ

with the following properties:

1. sop(r1) = {γn | n ∈ ω}.
2. r1(γn) = pn(γn).

Note that r1 extends each pn . For every n ∈ ω, the sequence 〈Dγn
i , Bγn

i 〉i∈ω is
(forced to be) a run of the game in BG(Qγn , r1(γn)) in which player II followed her
winning strategy. It follows that there must be a (name for a condition) that forces
that each Bγn

i is predense below it. Define r ∈ Pδ with sop(r) = {γn | n ∈ ω} and
for each n ∈ ω, we have that r(γn) is a name for a condition given by the game
BG(Qγn , r1(γn)). It follows that r extends r1. It is easy to see that player II was the
winner in the BG(Pδ, p). ��

By Propositions 6.3 and 6.5, we conclude the following:

Corollary 6.6 Let δ be an ordinal and 〈Pα, Q̇α | α � δ〉 a countable support iteration
of forcings. If Pα �“Q̇α is strategically bounding” for every α < δ, then Pδ is
strategically bounding.

7 Open questions

In this last section, we list some problems that the authors do not know how to answer.
First, the problems of Roitman and of Brendle and Raghavan are still open:

Problem 7.1 (Roitman) Does d = ω1 imply a = ω1?

Problem 7.2 (Brendle, Raghavan [8]) Does b = s = ω1 imply a = ω1?

Regarding the theory of strategically bounding forcings, we do not know the following:

Problem 7.3 Let P and Q be two forcing equivalent partial orders. If P is strategically
bounding, does it follow that Q is strategically bounding?

In [35] the diamond principle ♦(d) was introduced, which is strictly stronger than
♦d. We can ask the following:
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Problem 7.4 Let V |� ♦ and P be a strategically bounding forcing. Does ♦(d) hold
after forcing with P?

Recall that if P is strategically bounding, then its Boolean completion is also strate-
gically bounding, which is a partial answer to the problem above.

Problem 7.5 Is there a strategically bounding forcing that is not an Axiom A forcing
for d?

It is known that there are two forcing equivalent partial orders where one is Axiom
A and the other is not, so it is likely that this problem has a positive answer.

Problem 7.6 If P is strategically bounding, is there an Axiom A forcing for d that is
forcing equivalent to P?

Recall that by a theorem of Ishiu (see [25]) every < ω1-proper forcing has an
Axiom A representation, so it is possible that this problem has a positive answer.

Regarding tree MAD-families, we do not know the following:

Problem 7.7 Is a � aT ?

A negative answer seems very hard to obtain at the present knowledge. A model
of aT < a obtained by iterating proper forcings (over a model of CH) would also be
a model where the problem of Roitman is solved. On the other hand, other methods
like iterating along a template does not seem to help either.

Problem 7.8 Is it consistent that there are no tree Shelah–Steprāns MAD families?

Recall that Raghavan constructed amodelwhere there are no Shelah–SteprānsMAD
families.

Problem 7.9 Is there a combinatorial characterization of the tree-MAD families A

such that the Miller forcing P(A) is not strategically bounding? Does ZFC imply the
existence of such families?
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